Principles, practices and stakeholder expectations for reducing impacts of oil palm on the environment

Gary D. Paoli & Philip L. Wells

Reducing Impacts of Oil Palm

Indonesia

- Leading OP producer in the world
- Potential to expand rapidly

- Key to meet surging global demand
- GOI & investor support for expansion

Main Thematic Threads

Vision — Objectives & Targets

Information —— Data & Knowledge

Decision Tools — Analysis & Decision Factors

Reducing Environmental Impacts of OP

Spatial Planning

Vision ——

Promote economic development & protect key environmental resources

Information -

Topography, elevation, drainage, substrate, rainfall (but not land cover)

Decision Tools —

Numerical criteria plus gestalt (e.g. low lying areas near rivers = good for agriculture, known deep peat areas avoided where possible)

Spatial Plan

Forest Areas at Risk for Conversion

Social & Environmental Impact Assessment

Vision ——

Promote sustainable development by screening (reject) or modifying operations with unacceptable risk to people & environment

Information —

Variety of field & spatial data types

Decision Tools ---

Legal requirements, discussion & gestalt

Has spatial planning plus EIA helped to <u>avoid</u> environmental impacts from OP?

POLICY PERSPECTIVE

Is oil palm agriculture really destroying tropical biodiversity?

Lian Pin Koh¹ & David S. Wilcove^{1,2}

¹ Department of Ecology and Evolutionary Biology, Princeton University, 106A Guyot Half, Princeton, New Jersey 08544, USA

² Woodrow Wilson School of Public and International Affairs, Princeton University, Princeton, NJ 08544, USA

What explains failures to date?

- Based on suitability criteria not sustainability
- Limitations of data (types & quality)
- EIA authority is decentralized (local) & decision making prone to abuse

Normative Approach to Planning

Decision Tools — What analytical tools are available to support informed planning?

Forest Cover

Miettinen et al. 2010 - Enhanced MODIS (ALOS + Landsat)

Forest Cover

Aerial photography (<1 m res)

Aerial vs MODIS

Peat lands

High Conservation Value Areas

HCV 3

Erosion Prone Areas

Normative Approach to Planning

Vision —

Avoid forested, high carbon, high biodiversity, High Conservation Value, and hydrologically sensitive areas

Information

Are these data available?

Decision Tools —

What analytical tools are available to support informed planning?

Decision Support Tools

Koh et al. 2010

Spatially explicit trade-off analysis model

University of Queensland

Marxan with Zones

Marxan with Zones

University of Queensland

Oscar Venter, Univ. of Queensland

Avoiding Impacts from OP

Opportunities

- Sustainability ethos emerging
- Rapidly growing pool of data & analytical tools
- Scope to improve ESIA for site-level screening
- Due diligence by progressive companies to screen high risk
- GOI commitment to make available 'low carbon' deforested lands

Challenges

- Forging a consensus Vision
- Balancing data coverage, resolution and cost
- Regulatory reform (peat)
- Absolute vs Relative loss
- Creating incentives to promote behaviors
- Making available 'low carbon' deforested lands

Reducing Impacts of Oil Palm

Mitigating Impacts

Business as Usual

No Direct Negative Impact

Zero Net Impact

Secure Long Term Positive Net Impact

Mitigation Effort

Population fragmentation

Mitigating Impacts

- 1. Maximize habitat area & quality
- 2. Maximize connectivity
- 3. Enhance the oil palm matrix

Cross-boundary Management

License area = 3000-20000 ha

Retaining Forest Strips as...

Corridors

Habitat

Maintaining Forest Strips on Peatlands

Asia Pacific Resources International Limited - APRIL

Mosaic Plantation Model

Enhance the Oil Palm Matrix

'Shaggy Plantation' Model

Mitigating Impacts from OP

Opportunities

- Active area of scientific research
- Unplanned experimentation
- Cross boundary collaboration
- REDD+ finance

Challenges

- Government policy
- Cost vs benefits
- High expectations
- Conflict with local communities
- Pressures from indirect land use change

Reducing Impacts of Oil Palm

Offsetting Impacts of Oil Palm

SLOSS Revisited?

Fragment Size

Are there circumstances where it's better to convert & offset ?

License to Destroy vs Logical Best Alternative

Acknowledgements

Zoological Society of London Wildlife Conservation Society Proforest

